National Healthcare Safety Network Antibiotic Use and Resistance

Jenna Preusker, PharmD, BCPS Pharmacist, Healthcare Associated Infections and Antibiotic Resistance

Lacey Pavlovsky, RN, MSN, CIC, CIC-LTC Infection Preventionist, Healthcare Associated Infections and Antibiotic Resistance

6.9.2023

NEBRASKA

Good Life. Great Mission.

DIVISION OF PUBLIC HEALTH

DEPT. OF HEALTH AND HUMAN SERVICES

Disclosures

The presenters today do not have any relevant disclosures to report related to this presentation.

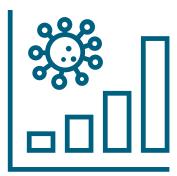
Disclaimer – neither presenter works for the CDC or CMS!

Objectives

Summarize benefits of reporting data to the NHSN AUR module

Understand the various data output options for AU and AR data

Review hospital case examples of implementing antibiotic stewardship interventions based on NHSN AU data


NE DHHS AU and AR module implementation funding reimbursement process

Summarize benefits of reporting data to the NHSN AUR module

4

Benefits to AUR Reporting Insights and Data

- Benchmarking institutional antibiotic consumption to similar hospitals and national trends
- Evaluating stewardship quality initiatives
- Identify problem areas within a facility to target interventions
- Justifying antibiotic stewardship program positions
- Demonstrating the value of the program to local stakeholders
- Contributing to public health by providing antimicrobial resistance tracking on a more global scale

Inpatient Antibiotic Use

Centers for Disease Control and Prevention CDC 24/7: Saving Lives, Protecting People™

Antibiotic Resistance & Patient Safety Portal

Inpatient Antibiotic Use

ADULT: NUMBER OF FACILITIES WITH THE ALL ANTIBACTERIAL SAAR STATISTICALLY SIGNIFICANTLY > 1.0

Acute care hospitals reporting 9 or more months in 2021 from a SAAR-eligible location. See footnote for more information on SAAR-eligibility criteria.

601 / 1703 (35.3%) Facilities PEDIATRIC: NUMBER OF FACILITIES WITH THE ALL ANTIBACTERIAL SAAR STATISTICALLY SIGNIFICANTLY > 1.0

Acute care hospitals reporting 9 or more months in 2021 from a SAAR-eligible location. See footnote for more information on SAAR-eligibility criteria.

72 / 327 (22.0%) Facilities NEONATAL: NUMBER OF FACILITIES WITH THE ALL ANTIBACTERIAL SAAR STATISTICALLY SIGNIFICANTLY > 1.0

Acute care hospitals reporting 9 or more months in 2021 from a SAAR-eligible location. See footnote for more information on SAAR-eligibility criteria.

204 / 624 (32.7%) Facilities

6

Benefits to AUR Reporting Insights and Data

Antibiotic Stewardship guidance from Nebraska ASAP

Nebraska ASAP sends annual letters to each individual facility reporting to the Antibiotic Use Module offering insight to usage trends

Nebraska Antimicrobial Stewardship Assessment and Promotion Program

Antimicrobial Stewardship Committee ABC Nebraska Hospital 1000 Nebraska Street City in NE, NE 68XXX

Date: 01/04/2023

Dear Members of the ABC Nebraska Hospital Antimicrobial Stewardship Committee:

Through partnership with Nebraska DHHS, Nebraska ASAP has reviewed antibiotic use data that your facility has submitted to the NHSN AUR module and conferred to the state. **Table 1** below depicts your facility's calculated Standardized Antibiotic Administration Ratios (SAAR), which is a risk-adjusted summary measure of antibiotic use that can be helpful for benchmarking against like institutions.

Summary of Findings:

Your facility typically has less antimicrobial use than predicted in many areas, although antibiotic use appears to have increased across the board in early-mid 2022. We recommend the following areas should be investigated:

- Broad-spectrum agents (Med/Surg Ward) Your SAAR values for broad-spectrum agents for hospitalonset infections (cefepime, piperacillin-tazobactam, meropenem, etc.) are consistently higher than 1 in the medical/surgical unit this year. These SAARs are only mildly elevated, but we recommend evaluating use of these agents to determine if that use is appropriate. Future efforts could be made to focus on narrowing or discontinuing these agents when appropriate.
- Agents at higher risk of causing CDI Step Down Unit Your SAAR values for high-risk CDI agents (fluoroquinolones, cefepime, ceftriaxone, etc.) in the step down unit were also greater than 1 throughout early 2022, although the elevations were slight.
- Narrow spectrum beta-lactam agents ICU Your SAAR values for narrow-spectrum beta-lactam
 agents (ampicillin-sulbactam, amoxicillin-clavulanate, cefazolin) in ICU were consistently above 1.
 These elevations may reflect your stewardship program's interventions to narrow therapy (thereby
 decreasing BSHO/BSCA use in those areas), prolonged surgical prophylaxis, or may be due to other
 causes. We would suggest evaluating the use of these agents to determine if that use is appropriate.
 Future efforts could be made to focus on shortening durations and discontinuing therapy altogether
 when possible.

Overall, your facility appears to be similar to other Nebraska facilities reporting AU data to NHSN, although use appears to have increased in early 2022. We recommend investigating the above areas to continue to improve antibiotic use at your facility. We appreciate your continued reporting to the AUR module and your facility's willingness to confer rights to the State of Nebraska. This is vital to increasing awareness of antibiotic use in the state while also providing you with valuable insight and recommendations for your facility's antibiotic use. If you have any questions, want to share your tracked antibiotic use for interpretation and guidance, or would like to schedule a follow-up meeting to discuss more, please contact Nebraska ASAP at nebraskaasap@nebraskamed.com. We look forward to working more with you moving forward.

Sincerely,

Tevin

Bahl

Trevor VanSchooneveld, MD Nebraska ASAP Medical Director

Daniel Schroeder, PharmD, BCPS Nebraska ASAP Antimicrobial Stewardship Pharmacist

DIVISION OF PUBLIC HEALTH

Example annual Nebraska ASAP letter

(fictitious hospital for example only)

Benefits of AUR Reporting Regulatory and Payment

- Meet the CMS Promoting Interoperability requirement added for CY 2024
- Satisfy the Joint Commission's Antimicrobial Stewardship Standard for tracking and reporting
- Added to the CDC Priorities for Hospital Antibiotic Stewardship Core Element Implementation in 2022

Hospital Core Elements	Priorities for Hospital Core Element Implementation
Monitor antibiotic prescribing, impact of interventions, and other important outcomes, like <i>C. difficile</i> infections and resistance patterns.	Hospital submits antibiotic use data to the NHSN Antimicrobial Use Option.

Understand the various data output options for AU and AR data

NHSN Data Output Options

- AU line list
 - Review your own facility's data
- SAAR line list
 - Facility comparison data
- TAS (Target, Assess, Steward)
- Data quality line list
 - Validation
- Bar charts
- Pie charts

🗼 Analysis Reports

Expand All	Collapse All	Search								
🕬 📴 Device-Associated (DA) Module										
🕬 📴 Proce	dure-Associated	(PA) Module								
4 🚞 HAI A	ntimicrobial Resi	stance (DA+PA Modules)								
⊳ 📴 Ur	nusual Susceptibi	lity Profile Alerts								
⊳ 📔 Ar	ntimicrobial Resis	stant HAIs								
🕬 📴 Antim	icrobial Use and I	Resistance Module								
🗁 🚞 MDRO	D/CDI Module - L	ABID Event Reporting								
Der 🔁 MDRO	D/CDI Module - Ir	nfection Surveillance								
Im 📴 MDRO	D/CDI Module - P	rocess Measures								
Im 📴 MDRO	D/CDI Module - C	Outcome Measures								
🖙 📄 COVID-19 Module										
🖙 📴 CMS Reports										
- TAP R	TAP Reports									

NHSN AU Reports – DOT/1,000 Days Present

Line Listing - Most Recent Month of AU Data for FACWIDEIN Line Listing - Most Recent Month of AU Data by Location Line Listing - All Submitted AU Data for FACWIDEIN Line Listing - All Submitted AU Data by Location

- Antimicrobial days:
 - 1 antimicrobial day = any amount of specific antibiotic administered in a calendar day to a particular patient
- Days present: total number of patients in a location or facility anytime each day during a calendar month

 $\frac{Drug \ specific \ antimicrobial \ days \ per \ patient \ care \ location \ per \ month}{Days \ present \ per \ patient \ care \ location \ per \ month} \times 1000$

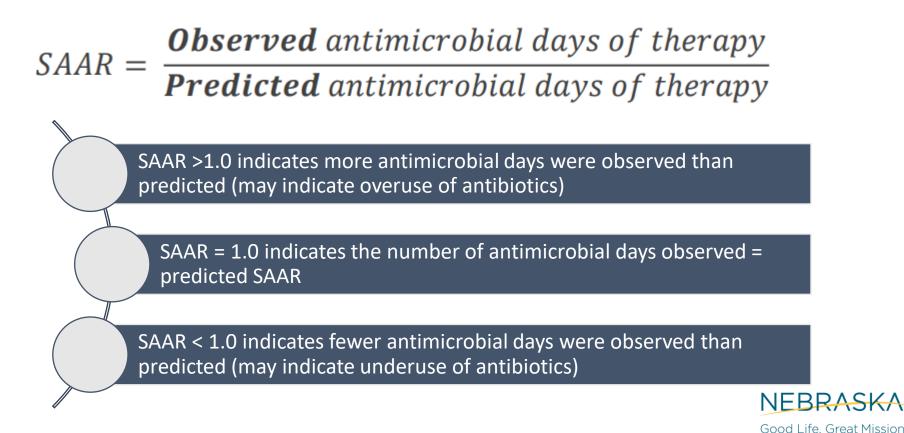
AU Line Listing

National Healthcare Safety Network Line Listing - All Submitted AU Data by Location

As of: December 3, 2018 at 3:09 PM Date Range: SUMMARYAU summaryYQ 2017Q3 to 2017Q3 if (((location = 4MICU)))

Location=4MICU

Summary Year/Month	Antimicrobial Agent Description	Antimicrobial Days	Days Present	Admissions	Route: IM	Route: IV	Route: Digestive	Route: Respiratory	Location
2017M07	AMAN - Amantadine	0	500		0	0	0	0	4MICU
2017M08	AMAN - Amantadine	0	482		0	0	0	0	4MICU
2017M07	AMK - Amikacin	0	500		0	0	0	0	4MICU
2017M08	AMK - Amikacin	0	482		0	0	0	0	4MICU
2017M07	AMOX - Amoxicillin	0	500		0	0	0	0	4MICU
1 2017M08	AMOX - Amoxicillin	2	482		0	0	2	0	4MICU
2017M07	AMOXWC - Amoxicillin with Clavulanate	2	500	-	0	0	2	0	4MICU
2017M08	AMOXWC - Amoxicillin with Clavulanate	2	482	-	0	0	2	0	4MICU
2017M07	AMP - Ampicillin	0	500		0	0	0	0	4MICU
2 2017M08	AMP - Ampicillin	6	482		0	6	0	0	4MICU
2017M07	AMPH - Amphotericin B	0	500		0	0	0	0	4MICU
2017M08	AMPH - Amphotericin B	0	482		0	0	0	0	4MICU
2017M07	AMPHOT- Amphotericin B Liposomal	0	500	-	0	0	0	0	4MICU
		-			-		-	-	



13 Fictitious data for illustrative purposes only

Standardized Antimicrobial Administration Ratio (SAAR)

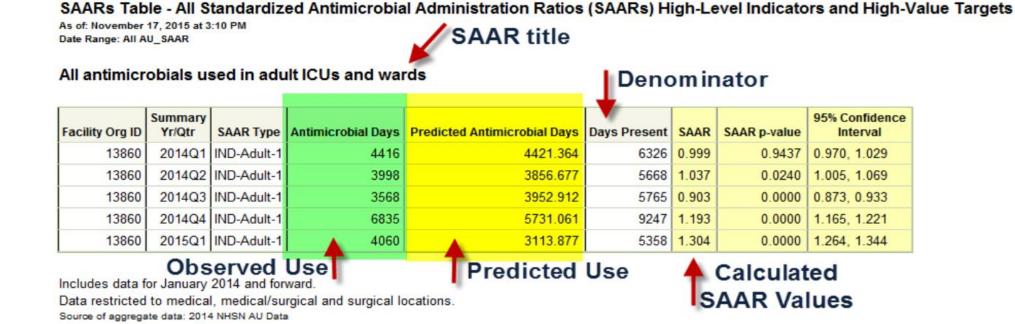
- NHSN calculates predicted antimicrobial days by risk-adjusting for location- and facility-level factors found to be statistically significantly associated with differences in AU rates among the SAAR referent population
- NOT a measure of appropriateness or judicious antimicrobial use

SAAR Types

- SAARs can be generated for 22 antimicrobial agent categories (7 adult, 8 pediatric, and 7 neonatal)
 - All antibacterial agents
 - Broad spectrum antibacterial agents predominantly used for hospital-onset infections
 - Broad spectrum antibacterial agents predominantly used for community-acquired infections
 - Antibacterial agents predominantly used for resistant Gram-positive infections (e.g., MRSA)
 - Narrow spectrum beta-lactam agents
 - Antibacterial agents posing the highest risk for CDI
 - Antifungal agents predominantly used for invasive candidiasis
 - Azithromycin (Pediatric Locations ONLY)
- Analyzed for specific location types for which sufficient data is available to predict AU
 - NHSN uses negative binomial regression for AU risk-adjustment
 - The model uses a set of fixed parameters (adjustment variables) for each SAAR type to predict risk of AU in a set of SAAR-locations

SARR Antimicrobial Groupings

Broad spectrum antibacterial agents predominantly used for hospital-onset infections (BHSO_ICU/Ward_2017)									
Amikacin	Ceftazidime/Avibactam	Doripenem	Meropenem						
Aztreonam	Ceftolozane/tazobactam	Gentamicin	Piperacillin/tazobactam						
Cefepime	Colistimethate	Imipenem/Cilastatin	Tobramycin						
Ceftazidime									
Broad spectrum antibacterial agents predomin	17)								
Cefaclor	Cefpodoxime	Cefuroxime	Gemifloxacin						
Cefdinir	Cefprozil	Ciprofloxacin	Levofloxacin						
Cefixime	Ceftriaxone	Ertapenem	Moxifloxacin						
Cefotaxime									
Antibacterial agents predominantly used for re	esistant Gram-positive infections (e.g.	MRSA- GramPos_ICU/Ward_2	017)						
Ceftaroline	Linezolid	Quinupristin/Dalfopristin	Televancin						
Dalbavancin	Oritavancin	Tedizolid	Vancomycin						
Daptomycin									
Narrow spectrum beta-lactam agents (NSBL_I	CU/Ward_2017)								
Amoxicillin	Cefadroxil	Cephalexin	Penicillin G						
Amoxicillin/Clavulanate	Cefazolin	Dicloxacillin	Penicillin V						
Ampicillin	Cefotetan	Nafcillin							
Ampicillin/Sulbactam	Cefoxitin	Oxacillin							
Antibacterial agents posing the highest risk fo	r CDI (CDI_ICU/Ward_2017)								
Cefdinir	Cefotaxime	Ceftriaxone	Gemifloxacin						
Cefepime	Cefpodoxime	Ciprofloxacin	Levofloxacin						
Cefixime	Ceftazidime	Clindamycin	Moxifloxacin						
Antifungal agents predominantly used for invasive candidiasis (Antifungal_ICU/Ward_2017)									
Anidulafungin	Caspofungin	Fluconazole	Micafungin						

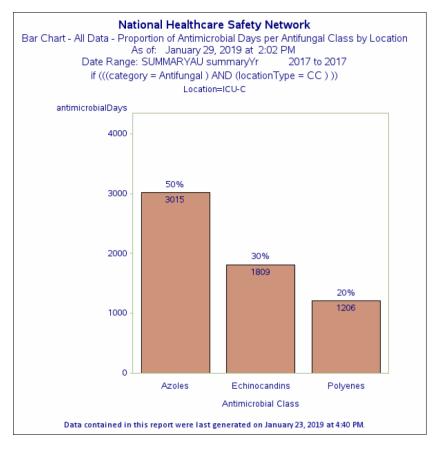


Standardized Antimicrobial Administration Ratio (SAAR) Reports

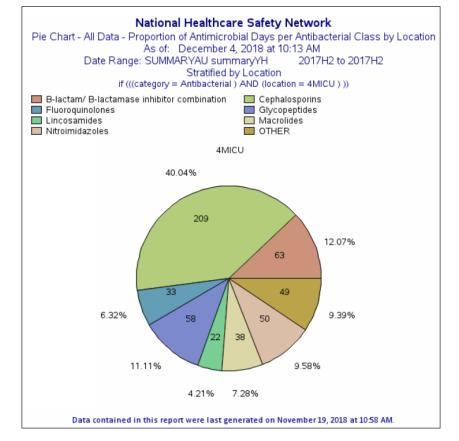
National Healthcare Safety Network

Data contained in this report were last generated on November 11, 2015 at 5:57 PM.

• Standardized Antibiotic Administration Ratio (SAAR) reports can be produced by month, quarter, half year, year or cumulative time periods


Standardized Antimicrobial Administration Ratio (SAAR) Reports

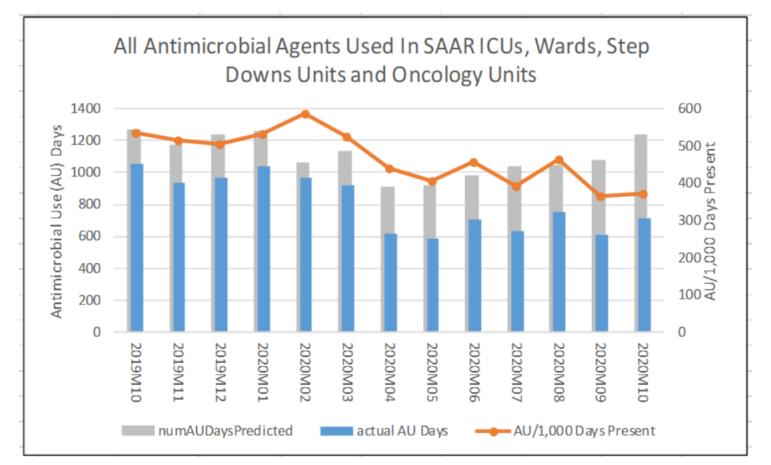
- NOT a measure of appropriateness or judicious antimicrobial use
- SAAR metrics cannot provide clinical context of the prescribing culture at an institution
- SAAR highlights areas of variance/deviation from the expected
- SAAR needs to be combined with onsite clinical context to effectively design interventions



NHSN AU Data Output – Graphical Options

Bar Charts

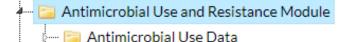
Pie Charts



DIVISION OF PUBLIC HEALTH

19 Fictitious data for illustrative purposes only

AU data can be exported to Excel for chart creation



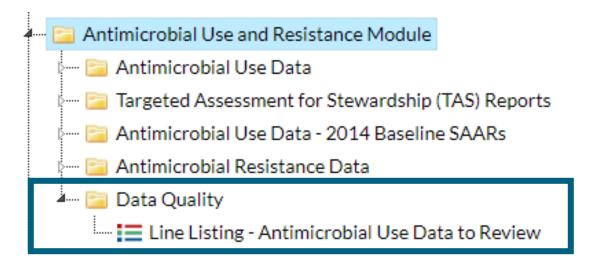
DIVISION OF

PUBLIC HEALTH

TAS (Target, Assess, Steward) Reports

- --- 🚞 Targeted Assessment for Stewardship (TAS) Reports
- --- 📴 Antimicrobial Use Data 2014 Baseline SAARs
- -- 📴 Antimicrobial Resistance Data
- -- 🚞 Data Quality
 - 🔚 Line Listing Antimicrobial Use Data to Review

- Target: Run TAS Reports in NHSN to identify locations for further assessment using the ranked AU cumulative attributable difference (AU-CAD).
- Assess: Utilize assessment tools to identify gaps and opportunities to improve antibiotic use.
- Steward: Implement antibiotic stewardship activities to address gaps and opportunities.
- Note: TAS reports are only available for locations that can generate SAAR values



DIVISION OF PUBLIC HEALTH

21 NHSN AU TAS Webinar (cdc.gov)

Data Quality Line List

- In addition to the Implementation Data Validation Protocol and Annual Data Validation Protocol, NHSN has a report built to help facilities find potential data errors
- Facilities should run this report periodically and follow-up with your vendor to address data quality concerns.
 - Zero or Missing Antimicrobial Days
 - Antimicrobial Days Reported when Patients were Not Present
 - Antimicrobial Days ≥ Days Present
 - Sum of Routes < Total Antimicrobial Days

Antibiotic Resistance Option Output

• Line listing

- Can create a list of AR events by pathogen
- Can be modified to show additional variables
- Facility-wide antibiogram
 - Limitations
 - Eligible specimen source groups include only blood, CSF, urine, and lower respiratory
 - If antibiotic susceptibilities are suppressed in your facility report, that information may be missing in NHSN

[Antimicrobial Resistance Data
	Eine Listing - All Antimicrobial Resistance Events
	💵 Bar Chart - All Antimicrobial Resistance Events
	🔤 Line Listing - Antimicrobial Resistant Organisms
	Frequency Table - Antimicrobial Resistant Organisms
	💹 Facility-wide antibiogram (Percent Susceptible) and Percent Tested
	🔤 📈 Rate Table - Antimicrobial Resistance Percentages
	🖙 💹 Rate Table - Hospital-onset Antimicrobial Resistance Incidence
	🖙 💹 Rate Table - Community-onset Antimicrobial Resistance Prevalence
	🔤 🌌 Rate Table - Outpatient Antimicrobial Resistance Prevalence
	🖙 💹 Rate Table - Hospital-onset Positive Culture Incidence by Organism
	🖙 💹 Rate Table - Community-onset Positive Culture Prevalence by Organism
	🔤 🌌 Rate Table - Outpatient Positive Culture Prevalence by Organism
	Line Listing - All AR Summary Data

Standardized Resistant Infection Ratio (SRIR)

- The Standardized Resistant Infection Ratio (SRIR) is a metric developed by CDC to enable facilities to compare their rates of hospital-onset (HO) drugresistant infection events to the national benchmarks.
- The SRIR adjusts for various facility level factors that contribute to AR risk within each facility.

 $SRIR = \frac{Observed Resistant Infections}{Predicted Resistant Infections}$

• Number of hospital-onset AR Events that meet NHSN-specific resistance definitions

Includes 3 specimen sources (blood, urine, and lower respiratory

- Carbapenem-resistant Enterobacterales
- Extended-spectrum cephalosporin-resistant Enterobacterales
- Fluoroquinolone-resistant Enterobacterales
- Vancomycin-resistant *Enterococcus*
- Fluoroquinolone-resistant *Pseudomonas aeruginosa*
- Multi-drug-resistant *Pseudomonas aeruginosa*
- Methicillin-resistant *Staphylococcus aureus*

Case examples of implementing antibiotic stewardship interventions based on NHSN AU data

Case #1 – Potential Antibiotic Overuse identified by high SAAR Values

- You are the antimicrobial stewardship pharmacist for a 100- bed community hospital
- Your facility has started to participate in NHSN AU module, and you now have access to a year's worth of DOT and SAAR data
- You are looking to utilize the NHSN AU data to decide on the next targeted intervention your antimicrobial stewardship program will implement

Case #1

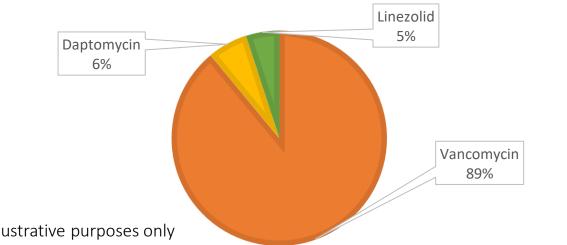
SAAR Metric	Q1 2022	Q2 2022	Q3 2022	Q4 2022
All Antibacterial Agents (FACWIDEIN)	1.13	1.15	1.16	1.13
Antifungal (ICU)	0.92	0.98	1.01	1.34
Antifungal (Ward)	1.21	0.82	0.67	0.73
Broad-Spectrum Hospital Onset (ICU)	1.15	1.24	1.07	1.04
Broad-Spectrum Hospital Onset (Ward)	1.17	1.09	1.08	1.13
Resistant Gram positives (ICU)	1.22	1.36	1.31	1.41
Resistant Gram positives (Ward)	1.47	1.36	1.21	1.56
Narrow Spectrum beta-lactams (ICU)	0.89	0.91	0.90	1.01
Narrow Spectrum beta-lactams (Ward)	1.08	0.97	0.99	1.22

27 Fictitious data for illustrative purposes only

Based on the available SAAR data, what would be a reasonable initiative for your antibiotic stewardship team to implement?

- A. Carbapenem restriction criteria
- B. Mandatory ID consult for Staphylococcus aureus bacteremia

C. Pharmacy-driven MRSA nares PCR screening for patients on empiric anti-MRSA therapy


D. Prospective audit and feedback targeting fluconazole

• DOT / 1000 Patient Days can be useful to determine which antimicrobial is driving the elevation in SAAR

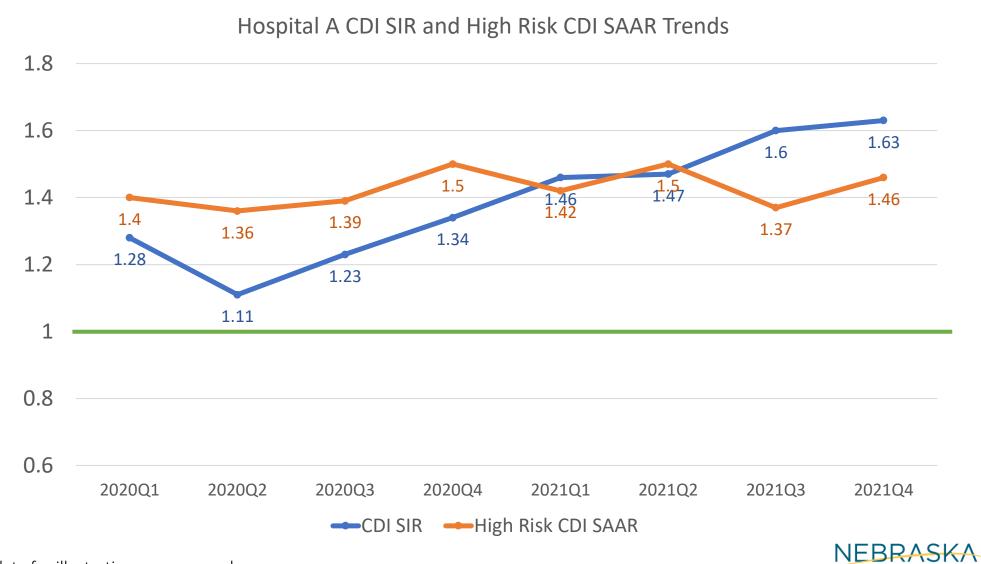
Antimicrobial	Days of Therapy per 1,000 Patient Days										
	Q1 2022	Q2 2022	Q3 2022	Q4 2022							
Vancomycin	109	104	115	101							
Daptomycin	10	9	9	10							
Linezolid	5	3	2	5							

Based on the available DOT data, which anti-MRSA agent would you focus prospective audit and feedback efforts on?

A. Vancomycin

B. Daptomycin

C. Linezolid



Case #2 – SIR data + SAAR data

- The hospital's infection preventionist has shared at the antibiotic stewardship committee meeting that the hospital's *C diff* SIR has been trending upward over the last 6 months.
- In addition to other hospital-wide efforts (including changes in environmental cleaning, hand hygiene, and *C diff* testing strategies), are there potential ASP initiatives related to antibiotic use that can be identified by the hospital's NHSN AUR data?

DOT / 1000 Patient Days can be useful to determine which antimicrobial is driving the elevation in SAAR

Antimicrobial	Days of Therapy per 1,000 Patient Days									
	Q1 2021	Q2 2021	Q3 2021	Q4 2021						
Ceftriaxone	103	89	96	101						
Cefepime	19	22	24	26						
Levofloxacin	44	39	40	47						

Based on the available DOT data, which high-risk CDI agent(s) would you focus prospective audit and feedback efforts on?

- A. Ceftriaxone
- B. Cefepime
- C. Levofloxacin

D. Ceftriaxone and Levofloxacin

32 Fictitious data for illustrative purposes only

Case #2 - Interventions

- Indication is required to be documented on each antibiotic order at your institution
- On review of documented indications for antibiotic orders, it was found that ceftriaxone and levofloxacin were predominantly being used in your facility to treat community-acquired pneumonia and urinary tract infections
- **Community-acquired pneumonia** was chosen as the target for interventions
 - Order sets
 - Long durations of therapy pre-populated (10 days of therapy for community-acquired pneumonia) for both ceftriaxone and levofloxacin
 - Order set durations were adjusted
 - Education was sent to providers recommending shorter courses of 5 days per IDSA guidelines
 - Alternative, lower CDI-risk antibiotics (such as ampicillin-sulbactam) were added to the order set
 - Education given to providers on higher CDI-risk antibiotic choices

Case #2 – Goal Setting

- The Antibiotic Stewardship Committee at your institution hopes that these interventions would result in a 20% reduction in the High-Risk CDI SAAR in the 12 months following implementation
- The TAS (Target, Assess, Steward) report within NHSN can help the committee determine how much change is needed in prescribing numbers to achieve their 20% SAAR reduction goal
- To get a SAAR of 1.2 (~20% reduction) your facility would have needed to reduce the use of antimicrobials in the High-Risk CDI antibiotics category by 355 antimicrobial days over the last 12 months

SAARTypeCat	AU-CAD Rank	Facility AU-CAD (Rounded)
ALL	1	1668
NSBL	2	798
GRAMPOS	3	517
BSCA	4	374
CDI	5	355
ANTIFGL	6	150
BSHO	7	77

34 <u>NHSN AU TAS Webinar (cdc.gov)</u>

Fictitious data for illustrative purposes only

DIVISION OF

PUBLIC HEALT

- Your antimicrobial stewardship committee is completing their annual review of SAAR data to meet the CDC Core Elements of Tracking and Reporting
- You notice that your facility's usage in the category of narrow spectrum beta-lactam agents was on average 60% higher than your predicted usage in 2022
- You remember that the SAAR is not a measure of appropriateness and decide to investigate

SAAR Metric	Q1 2022	Q2 2022	Q3 2022	Q4 2022
All Antibacterial Agents (FACWIDEIN)	1.13	1.15	1.16	1.13
Narrow Spectrum beta-lactams (ICU)	1.23	1.33	1.26	1.29
Narrow Spectrum beta-lactams (Ward)	1.68	1.55	1.63	1.72

- Questions to consider
 - 1. Does our hospital's antibiogram indicate that we should be using narrow-spectrum agents for all patients empirically based on resistance patterns?
 - 2. Are our antibiotic stewardship team members and hospital providers appropriately de-escalating therapy early to narrow-spectrum agents?
 - 3. Are we using antibiotics for surgical prophylaxis appropriately?

Question 1:

Does our hospital's antibiogram indicate that we should be empirically using narrow-spectrum agents based on resistance patterns?

NO – 173/613 isolates (28%) of *S. aureus* in 2022 were MRSA.

If patients have specific risk factors for MRSA, anti-MRSA agents should be used empirically. (MRSA rate is >20%)

Gram Positive Antibiogram Nebraska Medical Center Jan 1 - Dec 31, 2022 Admitted patients only, first isolate per patient	^{Isolates}	Ampicillin	Amp/Suth-	Cefazolin /-	Cefuroxing	Ceftriaxon (2nd)	Cefepime (3rd)	Clindan (4th)	Daptomycin	Erythrom	Levofloxani	Linezolid	Meropenan	Minocyclin	Nitrofi	Oxacilline	Penicillis	Rifamping	Sulfa/Trim	Tetracyclin	Vancomycin
Staphylococcus aureus	613	0		72		72		73	100	54	76	100				72	21	99	99	93	100
Methicillin-resistant S. aureus	173	R	R	R	R	R	R	61	100	19	32	100	R			R	R	98	97	87	100
Staphyloccoccus, Coagulase-negat	261	0		44		44		55	100	39	61	100				44	20	98	61	85	100
Staphylococcus epidermidis	204	0		33		31		48	100	28	55	100				33	13	98	51	84	100
Enterococcus faecalis	293	99	99	R	R	R	R	R	99	32	88	98			100		99		R	30	100
Enterococcus faecium	116	21	21	R	R	R	R	R	91	21	22	98			80		19		R	31	48
•Vancomycin-resistant E. faecium	64	0	0	R	R	R	R	R	86	27	1	98	0		80		0		R	20	R
Viridans Group Streptococci	89	76				95	92	88		47	81	100	100				76			69	100
Streptococcus pneumoniae †	69				76	100	96	90		55	97		78				88		62	79	100
Streptococcus (Group B) agalactie	*																				
 Subset of group above 		* L	Jse ca	autio	n inte	rpret	ing re	sult	s with	< 30	isola	tes			R	= Intr	insica	ally Re	esista	nt	
Bold are drugs of choice empirically	В	lanks	indic	ate r	not ro	utine	ly	^R	lifamp	oin no	ot for	mono	other	ару	0 N1	F tes	ted o	n Uri	ne iso	lates	only
¶ 100% for mecA(-) -> oxacillin-susc	(MSSA))	+ι	Jsing	non-	menir	ngitis	brea	akpoir	nts	+	GBS t	ested	d only	in pe	enicill	in-all	ergic	ОВ ра	atient	S
¶ 100% for mecA(-) -> oxacillin-susc (MSSA) †Using non-meningitis breakpoints ‡ GBS tested only in penicillin-allergic OB patients Green background = most likely susceptible, Yellow = possibly susceptible, Red = unlikely to be susceptible (avoid empirically) For more info, including Candida results, go to: www.unmc.edu/asp & select "Antibiograms"																					

Note: Nebraska Medical Center Antibiogram used for illustrative purposes only for case example

Question 2:

Are our antibiotic stewardship team members and hospital providers appropriately de-escalating therapy early to narrow-spectrum agents?

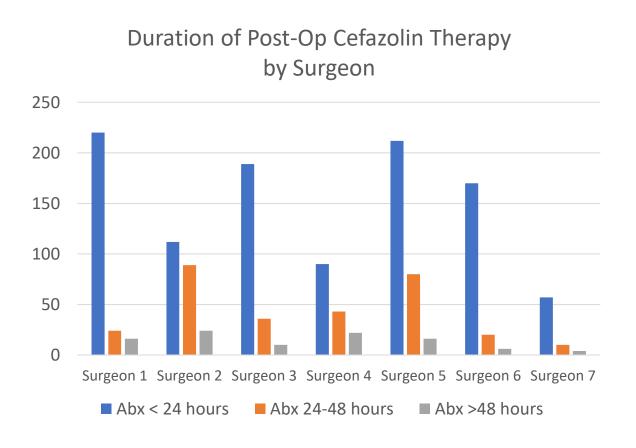
Yes –

Approximately 20% of ASP interventions are documented as "Streamline Therapy"

This could potentially be contributing to increased use of narrow-spectrum beta-lactam agents.

Intervention	2021	2022
Streamline therapy	134	146
Recommend discontinue antibiotics	66	73
Restricted antimicrobial review	84	96
Recommend ID consult	30	42
Recommend cultures	23	33
Antibiotic dose adjustment	212	263
Total Interventions	549	653

Fictitious data for illustrative purposes only


Question 3:

Are we using antibiotics for surgical prophylaxis appropriately?

No!

An EHR usage report shows that post-op antibiotics are commonly prescribed for > 24 hours.

- 400/1,450 patients (28%) received durations of cefazolin >24 hours postop. This likely contributed up to 1,200 excess cefazolin doses in 2022
- Some surgeons have a higher rate of >24-hour post-op prescribing than others
 - (Surgeon 1: 15% vs Surgeon 2: 50%)

- SAAR data can highlight areas of variance / deviations from expected use
- Clinical context is crucial when evaluating any antimicrobial utilization data
- DOT data can aid efforts to identify which antimicrobials are driving elevations in SAAR data

Nebraska DHHS HAI/AR Program Facility Funding FAQ

NHSN AUR Implementation in Nebraska – Funding Assistance

- Nebraska DHHS HAI/AR program currently has funding available to dedicate towards assisting hospitals with implementing NHSN Antibiotic Use and Resistance module
- Funding distributed by reimbursing at least part of their expenses for program implementation incurred between February 2022 – July 2024
- Facilities meeting all requirements for funding may request reimbursement for related eligible expenses up to the maximum amount allowed for their facility based on licensed bed size as follows:
 - Facilities with <100 licensed beds can request a maximum of \$10,000 in reimbursement
 - Facilities with 101-200 licensed beds can request a maximum of \$15,000 in reimbursement
 - Facilities with ≥201 licensed beds can request a maximum of \$20,000 in reimbursement

- Technology enhancements necessary for successful data submission to the Antibiotic Use and/or Antibiotic Resistance Module in NHSN.
 - Purchasing add-on software
 - Updating the hospital's existing electronic health record
- **Staff time** spent on implementation activities. Relevant staff includes, but is not limited to, pharmacists, hospital administrators, infection preventionists, information technologists, quality improvement personnel, and physicians.
- **Other** related expenses (subject to HAI/AR Program Approval)

Needed Documentation for Reimbursement

- Facilities have completed a baseline Antibiotic Stewardship Program self-assessment through the Nebraska Antimicrobial Stewardship Assessment and Promotion Program (ASAP) at least once since Feb 1, 2022.
 - <u>Baseline ASP Assessment for ACH</u>
- The facility should complete the online survey below to participate in the reimbursement process:
 - <u>Nebraska DHHS NHSN AUR Facility Reporting Capacity Survey</u>
- At least one month of data successfully submitted to NHSN and available for review by Nebraska DHHS
- Submission of receipts, invoices, and forms for eligible expenses via DHHS Redcap Survey (still in development)

What if we still have questions?

- AUR Module Resources
 - NHSN Helpdesk: <u>NHSN@cdc.gov</u>
 - AUR Module Website: https://www.cdc.gov/nhsn/psc/aur/index.html
 - AUR Trainings: <u>https://www.cdc.gov/nhsn/training/patient-safety-component/aur.html</u>
- CMS-related Questions
 - QualityNet help desk: <u>QnetSupport@cms.hhs.gov</u> or 1-866-288-8912
- Nebraska DHHS Contacts
 - Jenna Preusker (jenna.preusker@nebraska.gov) or
 - Lacey Pavlovsky (<u>lacey.pavlovsky@nebraska.gov</u>)

Thank you! Questions?

46